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On Certain Extremal Problems Concerning Polynomials
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Certain extremal problems concerning polynomials that have restricted ranges
with a node are investigated.  © 1990 Academic Press, Inc.

Let {u,}g be a Chebyshev system on [a, b] and let U=span{u,};. Let
[, geCla, b] satisfy /' > g. Given r*e[a, ] and ce (g(r*), f(*)), denote
K={ueU:g<u<f and u(t*)=c}. In this paper we discuss certain
extremal problems in K (Section II) and their applications to polynomials
(Section 11 for t* = a and Section IV for ¢* =0).

1}
In order to describe our basic results we need
DeriNiTiON.  If there exist ue K and m points
ast < - <t,<b
satisfying either
(i) t*=1, for some j and

C(fa_), i=2k+1 _ _
u(tm*i)—{g(tm_i)’ ok (i#t=m—j) (1)
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or

(i) +*=1, for some j and

. f([m-i.)’ l:2k . - i~
u(tmk,—)—'{g(tm‘i), Y (i£m—j) (2)

then u is said to alternate m times with respect to (g, /) having the
node r*, denoted by A ,(u)=m or A,(u)=m, respectively.
For convenience we write the following lemma which is from [3, p. 61 .

LemMMA.  Ler {u;} be a Chebysher system on [a, b] and ue U. If u has
n+1 weak sign changes on a set {t,, .. 1, ), a<i < ---</f,,,<5 [4
p. 2607, then u=0.

Our basic result, which is an extension of [1, p. 72, Theorem 11.16.2], is
as follows:

TueoreM 1. Ler {u,}; be a Chebyshev system on [a,b] and le:
£, g€ Cla, b] such thar there exists a polynomial ve K satisfving f >v> g.
Then there exists a unique polynomial i€ K satisfving A{ii)=n+1 and
there exists a unique polynomial ue K satisfying A,(u)=n+ 1.

Proof. The proof of uniqueness may proceed as in Theorem [1, p. 66.
[L10.11.

Without loss of generality we assume that t* < b; otherwise for 1* =5 we
may treat the functions f*(T)= f{—7) and g*(T)=g{—T) defined on
[ —b, —a] and the set {u*espan{u,(—T)}5: g*<u*< f* u¥(TH)=cl,
in which T%= —t*= ~b< —a

Take
0, tela, b—{b—a)k]
gXt)=< a linear function, telb—(b—ajk, bl
20 f— gl 1=b,

gi{t)=g(t)— gi1),
K,={ueU: g, <u<f,u(t*)=c},
k=12, ...

Let v, € K, be the best approximation to g, from X,, k=1, 2. ... Then for
each k there exist n+ 2 points [2]

a<ti<ti< ..o <t* ,<b
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such that *= tf.k and one of the following relations occurs:

) or gt +lve—gd,  i=2k'+1 L,
Uk(tf)z{gk(t,"), k k i= 2k’ (i#70 4)
or
Ky fad) or gltf)+ ek — gill, i=2k' s
)= {70k T #i0@

We may assume, selecting a subsequence if necessary, that

(a) v,—>uas k— oo for some uek

(b) All v, satisfy the same one of the above two relations, say (3);

(c) fi—1, a8 k—oo, i=1,.,n+2, th=1,=r* which satisfy that
PSRN PR

Assertion 1, If 1,=1,,, for some i<n+1, then t,=1¢,,, =5, whence

lj=--- =tr1+2=b'

In fact, suppose on the contrary that t,=1¢,, , <b. For k large enough we
have that g (r¥)=g(r¥) and g, (¢%, )= g(t%, ). Also it follows from
[[ = ti+ 1 that

klim (Uk(t’i()_vk(t{'(+1)) =0,

whence by (3) either

limflo,— gl =0, je{ii+1}

or
fim floe— gel +g(t)—c=0,  je{ii+1}.
But
fim o, — gl > im(v(B) — gu(b)) = u(b) — g(8) + 2 |.f — g >2 1/ — gl

(5)
a contradiction.

Assertion 2.



EXTREMAL PROBLEMS 5

y Assertion | it suffices to show that 1, <1, . Suppose not and le:
t,=1t,. Then by Assertion 1, t,=t,,.,=1,,,=b>r* Whence j<#n and

vt¥)=g(t*)  forsomei, izn+1. i73
For such an index i, by (3) we must have that
plti_ ) =Sl ) or  gltf_ i+ v~ gl (8
Since lim{v (1) — v, (¢f_)) =0, it follows from (5). (7). and (8) that either
0 =lim(g,(ef)— f(rF_ ) <lim(g(rf) — f(e4_ )y = glb)— f(b)
or
0= lim(g (1) — gu(r¥_;) — lox — gill)
=lim(g(rf)— g(rf_ ) +lim(g¥ef ;) — g&(t)) ~lim v, — g
<0+0-2(f—zl

=—2|f -zl

In any case it will give a contradiction. Thus ¢, #¢, , ,.

Assertion 3.

j<n+ 1. {9}
If possible, assume that j=n+ 2, i.e., t* = z,,+2 Of course by Assertion 1
and the assumption of r* <b we have that r;, < - <¢,, ,<1,,,=1t* For
any we K we sce that u—w has n+1 weak sign changes on a set
{t,,.s t,,,} and w=u by Lemma, a contradiction. The assertion is
complete.
By Assertion 3 from (3) and (5) we get that t* = and

(fir TV
u(r,) = f(z;), i=2k'+1

2(2) ok (I<isn+1,i#j})

te., u satisfies A, {u)=n+1 or A,(u)=n+ 1: Similarly, if we put that
K¥={uelU: g<u< fr,u(t*)=c},

where f,=f+g# we can get u*eK satisfying A,(u*)=n+1 or
A{u*)y=n-+1.
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Assertion 4. u#u*.

First, we note that there are w,, w,& K such that w,(b)<w,(b), for
otherwise we have that w(b)=v(b)=u(b) for any wek, where
f(bY>v(b)> g(b), which implies that ¢, ,#b and u—w has n+ 1 weak
sign changes on a set {f, .., [,.,,b}. Whence we obtain w=u again, a
contradiction. From 1w, (b)<w,(b) it follows that wu(b)<w,(b)<
w,o(b) < u*(b), ie, us#u* By Assertion4 and uniqueness we see that if
il =u then u=u* or conversely.

CoROLLARY L. If the function f(t) in Theorem 1 is a polynomial u(t) and
g=0, then there exist a unique representation

u(t)=u(t)+u*(1)
and a unique representation
u(t) =u(t) + u*(1),

where 1 and u are defined in Theorem | and A,(i*)=A,(u*)=n+1 with
the value f(*)—c at t* instead of c.

Proof. If f is a polynomial then the function f(r)—d#(r) obviously
satisfies that 4,(f— ) =rn+ 1 with the value f(¢*) — ¢ at r*. So, by unique-
ness, f(f)—u(t)=u*(?). Similarly, we have another representation

S — ult)=*(1).

THEOREM 2. Assume that the assumptions of Theorem Y are satisfied and
Surther {u;}q is a Chebyshev system on [a’,b']1> [a, b]. Let i and u be as
defined in Theorem 1 and let ue U satisfy g(t) <u(t) < f(t) for te[a, b].

(@) If (=)' ue*)< (= 1)" e and u# u, then

u(ty < u(r), t<a or t>b, n=2m
u(t) > u(1), t<a, n=2m+1
u(r) <u(r), 1>b, n=2m+ 1,

(b)Y If (—1)"*'"~u(r*)y2(~1)""" V¢ and u+i, then
u(t) > i(t), t<a or t>b, n=2m
u(t) <), t<a, n=2m+1

u(r) > ulr), 1>b, n=2m+ 1.
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Proof. We present only the proof of (a), the proof of {b} being
similar.
Since A (u)=n+1 and

(20, m+l—j=2k
alt;)—u(t))=c—ulr*) <0, n11~fi=2k+h
ulty . )—ult,, _,) zg’ ;iii'ﬁ‘l.
Especially
,u(tl)ﬂu(tl){zo’ e
<0, n=2m+1
and

y.([nﬁ—l)_"u(liwrl)zo'
Thus if for some r<a

<0, n=2m
=0, n=2m+1,

L_t(t)—u(f){

then u—u has n+ 1 weak sign changes on a set {s,¢,,..,¢,,,} and y=wu
by Lemma. Similarly, u(¢)— u(r) <0 for some 7> b implies y=u.

COROLLARY 2. Let the assumptions of Theorem 2 be satisfied and ue K.
If us#it and u+#u, then

a{t)y <u(t)<u(?), r<a or >4, n=2m
u(ty <u(ry<ii(t), I<a, n=2m+1
a(ry<ult)<uft), t>b, n=2m+ 1.

Proof. From Theorem 2 the corollary is immediate.

COROLLARY 3. Let the assumptions of Theorem 2 be satisfied with ¢ =0
and g= —f < f. Then for any ue K

lul < lu*], t<a or 1> b,
where

. lH n+l—j=2k
T la ml— =2kt
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in which equality can occur if and only if

u*, c>0
U= "
+u*, c=0.

Proof. Let n+1— j=2k. Since —a(t*)= —c<c, (— 1)1 77 (—a(t*))
£ (—1)**1"J¢. By Part (a) of Theorem 2 we obtain that

<ul?), t<a or t>b, n=2m
—u(t) < =ul1), t<a, n=2m+1

Sl_t(t)a t>ba I’l=2m+1

Coupled with Corollary 2 we get that

—u()y<a(t) <u(t)y<u(t), t<a or t>b, n=2m
u(H<u()<a(r) < —ult), t<a, n=2m+1
—u(t)<alt) <u()<u(r), t>b, n=2m+ 1.

In any case we have that
[0} < (o), t<a or 1> b,

in which equality can occur if and only if u=y or u= —yu=i. But —u=1a
if and only if ¢=0. Thus the equality in the above inequality can occur if
and only if

u, c>0
U=
+u, c=0.

Let n4+1—j=2k+1. Since —u(i*)= —c<e, (=117 (—u(t*)) 2
(—1)"*!"/c. In the remainder of the proof the same analysis as in the case
n+1— j=2k is applicable.

1

As usual 7,(r) denotes the Chebyshev polynomial of degreen of first
kind, n=0, 1, ...

THEOREM 3. Let P be a polynomial of degree ar most n>1 such thar
|[P()| <1 for \t| < 1. Ler s, and s, be the smallest values of t in [ —1, 1) for
which T,(s¢)=c and T,(s,)= —c, respectively (|c| < 1).
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{a} If P{—U)<c, then
POS T (3(1=50) 1+ 5(1 +350)), ltil>1,  #=2m
P —T,(3(1—=s)t+3+s,)). r<—1, n=2m+]
P(1)= —T,3(1 —s)) 14+ 31 +5,)), t>1, n=2m+1
Any of the equalities occurs for some t if and only if it occurs for any 1.

(by If P(—1)=c, then

P(yz~T, (St —s)t+ 51 +5), 1> 1 n=2m
P(1)=2T,3(1—s0) 1+ 3(1 +50)), < —1, n=2m+1
P{t) < T (A(1=s50) 1+ 21 +50)), t>1, n=2m+1.

Any of the equalities occurs for some t if and only if it occurs for any 1.

Proof. We present the proof of {a), the proof of (b) being similar. For
simplicity write S,(t)=T,(3(1 —s)1+3(1 +5,)), i=0, L.
As we know

T{x)=(—1)""% .r,=cost-l7r, i=0,1, .. 5 {10}
n

By the assumptions of the theorem —1=x,<s5; §;<x, < --- <Xx,=1.
Put

=Xy and fi+1:(xi_%(1+50))r"{%(1*50)), i=1 ., n
Then ry<it.< --- <1, and

. T(So):C, i=n
Solt y=< " ,
ol 1) {Tn(x,,,-)———(—l)‘, i=0,.,0—1,
which means A,(S;)=n+1 with /=1, g= —1 and r*= —1, ie, u= 3, by
Theorem 1. Similarly 4= —S,. Thus, if P(—1)<¢, then {—1)" P(—-1}<
(—1)"cfor n=2mand (—1)" P(—1)=(—1)"c for n=2m+ 1. The results
to be desired follow from Theorem 2.

From Theorem 3 the following is immediate by Corollary 2.
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COROLLARY 4. Under the assumptions of Theorem 3 if P(—1)=c but
P(1) # T,(3(1 —50)t+ 5(1 4 50)) and P(t) £ — T,(3(1 —s)t+3(1 +51)),
then

—~T,(z(1 =s)t+3(1+5,))

< P(1)< T,(3(1 —s¢) 1+ 3(1 +50)), [t >1, n=2m,
—Tn(%(1~sl)t+%(1+sl))
<P(t)<T,,(%(1—S0)t+%(1+S0)), t>1, n=2m+1,

Tn(%(l ‘"50)1“*’%(1 +50))
<P(t)< ~TG(1—s)t+3(t+sy), <=1, n=2m+1L

Remark. Theorem 3 is an extension of the theorem by Rivliin and
Shapiro [ 5], because we have

COROLLARY 5. Under the assumptions of Theorem 3, if P(—1)=c with
0<e< ] then

|P() <IT,(3(1 =)t +3(1 +5))], [t} >1, (11)
where

S*{SO’ n=2m
sy, n=2m+1.

Equality can occur in (11) if and only if

_(T,(5(L=s)r+3(1+5)), n=2m
Pm_{—T,,(%(l—s)t—#é(l%—s)), nemir 7Y (12)
P(t)= £ T,G(1=s)t+35(1+5)) (c=0).

Proof. In the proof of Theorem 3 we see that

u()=T,(5(1 —=s0)t+5(1+5)) and ()= ~T,(3(1—s)t+3(1+sy)).

For the case 0<c< 1 the corollary follows directly from Corollary 3
because j=1.

For the case ¢=1 we have that s,= —1 for n=2m and s, = —1 for
n="2m+ 1, which means that s= —1 and T,(3(1 —s)t+ 3(1 +5))= T,(¢).
Thus the corollary is a well known result.
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v

In this section the main result is

THEOREM 4. Let P be a polynomial of degree at most n=2m (m=1)
such that |P() <1 for jt| <1 and P(O)=c. Ler sy and s, be the smalles:
values of t in [0, 1) for which T,(sq)=c and T,{s,)= —c, respectively. Then

(a) Forlel <1
=TI =sDP+s) <SPS T /(1 —53) 17+ 55), [ > 1.
Any of the equalities can occur for some t if and only if it occurs for any :.
(b} For0<c<1 and

[0, m=2k
5= Si, m=2k+1,

[PUN<IT (/A=) +5%). > L

Equality can occur if and only if

, T/ (1 —5%) 17 +5%), =2k
P(in= —_— ,
‘ v {—Tn(\/(1~52)z2+sz), m=2k+1 (c>0)
P(t)y= £ T(/(1 =) +57) (c=0)

Proof. (a) For simplicity write S,(1)= T (/{1 —s3)>+s3). i=0,1.
Clearly S,(r) is symmetric with respect to . Putting

. _ _ J(2 2 2 ;
‘tM+1'—O’ ~_'t‘ln+1~i'_l‘mq‘—li—t‘“\/ (xm+i—s())/‘/(1—'5(j,}’ ‘:lv“-ams

where x,, . ;’s are defined in (10), we have that 7, < ... <, ,, and

T.(s0)=¢, i=0
Syt ;)= i
ol sy 41) {Tn(xmﬂ)z(__ 1y i=1, .. m

This means by Theorem 1 that u = S,. Similarly we can show #= —§,. By
Corollary 2 we obtain (a).

(b} Noting that j=m+ 1, the conclusion follows directly from
Corollary 3 for the case 0<<c< 1.
For the case c=1 we have that s=0 and 7,(\/(1 —s°)1* + 5% = T,{1).
The corollary is a well known result.
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