On Certain Extremal Problems Concerning Polynomials

Ying-Guang Shi*
Computing Center, Chinese Academy of Sciences, P. O. Box 2719, Beijing, China
Communicated by T. J. Rivlin
Received March 7, 1986

Certain extremal problems concerning polynomials that have restricted ranges with a node are investigated. © 1990 Acadernic Press, Inc.

I

Let $\left\{u_{i}\right\}_{0}^{n}$ be a Chebyshev system on $[a, b]$ and let $U=\operatorname{span}\left\{u_{i}\right\}_{0}^{n}$. Let $f, g \in C[a, b]$ satisfy $f>g$. Given $t^{*} \in[a, b]$ and $c \in\left(g\left(t^{*}\right), f\left(t^{*}\right)\right)$, denote $K=\left\{u \in U: g \leqslant u \leqslant f\right.$ and $\left.u\left(t^{*}\right)=c\right\}$. In this paper we discuss certain extremal problems in K (Section II) and their applications to polynomials (Section III for $t^{*}=a$ and Section IV for $t^{*}=0$).

II

In order to describe our basic results we need
Definition. If there exist $u \in K$ and m points

$$
a \leqslant t_{1}<\cdots<t_{m} \leqslant b
$$

satisfying either
(i) $t^{*}=t_{j}$ for some j and

$$
u\left(t_{m-i}\right)=\left\{\begin{array}{ll}
f\left(t_{m-i}\right), & i=2 k+1 \tag{1}\\
g\left(t_{m-i}\right), & i=2 k
\end{array} \quad(i \neq m-j)\right.
$$

[^0]or
(ii) $t^{*}=t_{j}$ for some j and
\[

u\left(t_{m-i}\right)=\left\{$$
\begin{array}{ll}
f\left(t_{m-i}\right), & i=2 k \tag{2}\\
g\left(t_{m-i}\right), & i=2 k+1
\end{array}
$$ \quad(i \neq m-j)\right.
\]

then u is said to alternate m times with respect to (g, f) having the node t^{*}, denoted by $A_{1}(u)=m$ or $A_{2}(u)=m$, respectively.

For convenience we write the following lemma which is from $[3, p .61]$.
Lemma. Let $\left\{u_{i}\right\}_{0}^{n}$ be a Chebyshev system on $[a, b]$ and $u \in U$. If u has $n+1$ weak sign changes on a set $\left\{t_{1}, \ldots, t_{n+2}\right\}, a \leqslant t_{1}<\cdots<t_{n+2} \leqslant b[4$, p. 260], then $u=0$.

Our basic result, which is an extension of [1, p. 72. Theorem II.10.2]. is as follows:

Theorem 1. Let $\left\{u_{i}\right\}_{0}^{n}$ be a Chebyshev system on $[a, b]$ and le: $f, g \in C[a, b]$ such that there exists a polynomial $v \in K$ satisfying $f>v>g$. Then there exists a unique polynomial $\bar{u} \in K$ satisfying $A_{1}(\bar{u})=n+1$ and there exists a unique polynomial $\underline{u} \in K$ satisfying $A_{2}(\underline{u})=n+1$.

Proof. The proof of uniqueness may proceed as in Theorem [1, p. 66. II.10.1].

Without loss of generality we assume that $t^{*}<b$; otherwise for $t^{*}=b$ we may treat the functions $f^{*}(T)=f(-T)$ and $g^{*}(T)=g(-T)$ defined on $[-b,-a]$ and the set $\left\{u^{*} \in \operatorname{span}\left\{u_{i}(-T)\right\}_{0}^{n}: g^{*} \leqslant u^{*} \leqslant f^{*}, u^{*}\left(T^{*}\right)=c\right\}$, in which $T^{*}=-t^{*}=-b<-a$.

Take

$$
\begin{aligned}
& g_{k}^{*}(t)= \begin{cases}0, & t \in[a, b-(b-a) / k] \\
\text { a linear function, } & t \in[b-(b-a) / k, b] \\
2\|f-g\|, & t=b,\end{cases} \\
& g_{k}(t)=g(t)-g_{k}^{*}(t), \\
& K_{k}=\left\{u \in U: g_{k} \leqslant u \leqslant f, u\left(t^{*}\right)=c\right\}, \\
& k=1,2, \ldots
\end{aligned}
$$

Let $v_{k} \in K_{k}$ be the best approximation to g_{k} from $K_{k}, k=1,2, \ldots$. Then for each k there exist $n+2$ points [2]

$$
a \leqslant t_{1}^{k}<t_{2}^{k}<\cdots<t_{n+2}^{k} \leqslant b
$$

such that $t^{*}=t_{j k}^{k}$ and one of the following relations occurs:

$$
v_{k}\left(t_{i}^{k}\right)=\left\{\begin{array}{ll}
f\left(t_{i}^{k}\right) \text { or } \quad g_{k}\left(t_{i}^{k}\right)+\left\|v_{k}-g_{k}\right\|, & i=2 k^{\prime}+1 \tag{3}\\
g_{k}\left(t_{i}^{k}\right), & i=2 k^{\prime}
\end{array} \quad\left(i \neq j_{k}\right)\right.
$$

or

$$
v_{k}\left(t_{i}^{k}\right)=\left\{\begin{array}{ll}
f\left(t_{i}^{k}\right) \text { or } \quad g_{k}\left(t_{i}^{k}\right)+\left\|v_{k}-g_{k}\right\|, & i=2 k^{\prime} \tag{4}\\
g_{k}\left(t_{i}^{k}\right), & i=2 k^{\prime}+1
\end{array} \quad\left(i \neq j_{k}\right) .\right.
$$

We may assume, selecting a subsequence if necessary, that
(a) $v_{k} \rightarrow u$ as $k \rightarrow \infty$ for some $u \in K$;
(b) All v_{k} satisfy the same one of the above two relations, say (3);
(c) $t_{i}^{k} \rightarrow t_{i}$ as $k \rightarrow \infty, i=1, \ldots, n+2, t_{j k}^{k}=t_{j}=t^{*}$, which satisfy that $t_{1} \leqslant \cdots \leqslant t_{n+2}$.

Assertion 1. If $t_{i}=t_{i+1}$ for some $i \leqslant n+1$, then $t_{i}=t_{i+1}=b$, whence $t_{i}=\cdots=t_{n+2}=b$.

In fact, suppose on the contrary that $t_{i}=t_{i+1}<b$. For k large enough we have that $g_{k}\left(t_{i}^{k}\right)=g\left(t_{i}^{k}\right)$ and $g_{k}\left(t_{i+1}^{k}\right)=g\left(t_{i+1}^{k}\right)$. Also it follows from $t_{i}=t_{i+1}$ that

$$
\lim _{k \rightarrow \infty}\left(v_{k}\left(t_{i}^{k}\right)-v_{k}\left(t_{i+1}^{k}\right)\right)=0
$$

whence by (3) either

$$
\lim \left\|v_{k}-g_{k}\right\|=0, \quad j \bar{\epsilon}\{i, i+1\}
$$

or

$$
\lim \left\|v_{k}-g_{k}\right\|+g\left(t_{i}\right)-c=0, \quad j \in\{i, i+1\}
$$

But

$$
\begin{equation*}
\lim \left\|v_{k}-g_{k}\right\| \geqslant \lim \left(v_{k}(b)-g_{k}(b)\right)=u(b)-g(b)+2\|f-g\| \geqslant 2\|f-g\|, \tag{5}
\end{equation*}
$$

a contradiction.
Assertion 2.

$$
\begin{equation*}
t_{1}<\cdots<t_{n+1} \tag{6}
\end{equation*}
$$

By Assertion 1 it suffices to show that $t_{n}<t_{n+1}$. Suppose not and le: $t_{n}=t_{n+1}$. Then by Assertion 1, $t_{n}=t_{n+1}=t_{n+2}=b>t^{*}$. Whence $j<n$ and

$$
\begin{equation*}
v_{k}\left(t_{i}^{k}\right)=g_{k}\left(t_{l}^{k}\right) \quad \text { for some } i, \quad i \geqslant n+1 . \tag{7}
\end{equation*}
$$

For such an index i, by (3) we must have that

$$
v_{k}\left(t_{i-1}^{k}\right)=f\left(t_{i-1}^{k}\right) \quad \text { or } \quad g_{k}\left(t_{i-1}^{k}\right)+\left\|v_{k}-g_{k}\right\| .
$$

Since $\lim \left(v_{k}\left(t_{i}^{k}\right)-v_{k}\left(t_{i-1}^{k}\right)\right)=0$, it follows from (5). (7), and (8) that either

$$
0=\lim \left(g_{k}\left(t_{i}^{k}\right)-f\left(t_{i-1}^{k}\right)\right) \leqslant \lim \left(g\left(t_{i}^{k}\right)-f\left(t_{i-i}^{k}\right)\right)=g(b)-f(b)
$$

or

$$
\begin{aligned}
0 & =\lim \left(g_{k}\left(t_{i}^{k}\right)-g_{k}\left(t_{i-1}^{k}\right)-\left\|v_{k}-g_{k}\right\|\right) \\
& =\lim \left(g\left(t_{i}^{k}\right)-g\left(t_{i-1}^{k}\right)\right)+\lim \left(g_{k}^{*}\left(t_{i-1}^{k}\right)-g_{k}^{*}\left(t_{i}^{k}\right)\right)-\lim \left\|v_{k}-g_{k}\right\| \\
& \leqslant 0+0-2\|f-g\| \\
& =-2\|f-g\| .
\end{aligned}
$$

In any case it will give a contradiction. Thus $t_{n} \neq t_{n+1}$.
Assertion 3.

$$
j \leqslant n+1
$$

If possible, assume that $j=n+2$, i.e., $t^{*}=t_{n+2}$. Of course by Assertion 1 and the assumption of $t^{*}<b$ we have that $t_{1}<\cdots<t_{n+1}<t_{n+2}=t^{*}$. For any $u \in K$ we see that $u-w$ has $n+1$ weak sign changes on a set $\left\{t_{1}, \ldots, t_{n+2}\right\}$ and $w=u$ by Lemma, a contradiction. The assertion is complete.

By Assertion 3 from (3) and (5) we get that $t^{*}=t$, and

$$
u\left(t_{i}\right)=\left\{\begin{array}{ll}
f\left(t_{i}\right), & i=2 k^{\prime}+1 \\
g\left(t_{i}\right), & i=2 k^{\prime}
\end{array} \quad(1 \leqslant i \leqslant n+1, i \neq j)\right.
$$

i.e., u satisfies $A_{1}(u)=n+1$ or $A_{2}(u)=n+1$. Similarly, if we put that

$$
K_{k}^{*}=\left\{u \in U: g \leqslant u \leqslant f_{k}, u\left(t^{*}\right)=c\right\},
$$

where $f_{k}=f+g_{k}^{*}$, we can get $u^{*} \in K$ satisfying $A_{1}\left(u^{*}\right)=n+1$ or $A_{2}\left(u^{*}\right)=n+1$.

Assertion 4. $u \neq u^{*}$.
First, we note that there are $w_{1}, w_{2} \in K$ such that $w_{1}(b)<w_{2}(b)$, for otherwise we have that $w(b)=v(b)=u(b)$ for any $w \in K$, where $f(b)>v(b)>g(b)$, which implies that $t_{n+1} \neq b$ and $u-w$ has $n+1$ weak sign changes on a set $\left\{t_{1}, \ldots, t_{n+1}, b\right\}$. Whence we obtain $w=u$ again, a contradiction. From $w_{1}(b)<w_{2}(b)$ it follows that $u(b) \leqslant w_{1}(b)<$ $w_{2}(b) \leqslant u^{*}(b)$, i.e., $u \neq u^{*}$. By Assertion 4 and uniqueness we see that if $\bar{u}=u$ then $\underline{u}=u^{*}$ or conversely.

Corollary 1. If the function $f(t)$ in Theorem 1 is a polynomial $u(t)$ and $g=0$, then there exist a unique representation

$$
u(t)=\vec{u}(t)+\underline{u}^{*}(t)
$$

and a unique representation

$$
u(t)=\underline{u}(t)+\bar{u}^{*}(t)
$$

where \bar{u} and \underline{u} are defined in Theorem 1 and $A_{1}\left(\bar{u}^{*}\right)=A_{2}\left(\underline{u}^{*}\right)=n+1$ with the value $f\left(t^{*}\right)-c$ at t^{*} instead of c.

Proof. If f is a polynomial then the function $f(t)-\bar{u}(t)$ obviously satisfies that $A_{2}(f-\bar{u})=n+1$ with the value $f\left(t^{*}\right)-c$ at t^{*}. So, by uniqueness, $f(t)-\vec{u}(t)=\underline{u}^{*}(t)$. Similarly, we have another representation $f(t)-\underline{u}(t)=\bar{u}^{*}(t)$.

Theorem 2. Assume that the assumptions of Theorem 1 are satisfied and further $\left\{u_{i}\right\}_{0}^{n}$ is a Chebyshev system on $\left[a^{\prime}, b^{\prime}\right] \supset[a, b]$. Let \bar{u} and \underline{u} be as defined in Theorem 1 and let $u \in U$ satisfy $g(t) \leqslant u(t) \leqslant f(t)$ for $t \in[a, b]$.
(a) If $(-1)^{n+1-j} u\left(t^{*}\right) \leqslant(-1)^{n+1-j} c$ and $u \neq \underline{u}$, then

$$
\begin{array}{lll}
u(t)<\underline{u}(t), & t<a \quad \text { or } \quad t>b, & n=2 m \\
u(t)>\underline{u}(t), & t<a, & \\
u(t)<\underline{u}(t), & t>b, & \\
n=2 m+1 \\
& & n=2 m+1
\end{array}
$$

(b) If $(-1)^{n+1-j} u\left(t^{*}\right) \geqslant(-1)^{n+1-j} c$ and $u \neq \bar{u}$, then

$$
\begin{array}{lll}
u(t)>\bar{u}(t), & t<a \\
u(t)<\bar{u}(t), & t<a, & \\
& & n=b, \\
u(t)>\bar{u}(t), & t>b, & n=2 m+1 \\
& & n=2 m+1 .
\end{array}
$$

Proof. We present only the proof of (a), the proof of (b) being similar.

Since $A_{2}(\underline{u})=n+1$ and

$$
\begin{aligned}
& \underline{u}\left(t_{j}\right)-u\left(t_{j}\right)=c-u\left(t^{*}\right) \begin{cases}\geqslant 0, & n+1-j=2 k \\
\leqslant 0, & n+1-j=2 k+1,\end{cases} \\
& \underline{u}\left(t_{n+1-i}\right)-u\left(t_{n+1-i}\right) \begin{cases}\geqslant 0, & i=2 k \\
\leqslant 0, & i=2 k+1 .\end{cases}
\end{aligned}
$$

Especially

$$
\underline{u}\left(t_{1}\right)-u\left(t_{1}\right) \begin{cases}\geqslant 0, & n=2 m \\ \leqslant 0, & n=2 m+1\end{cases}
$$

and

$$
\underline{u}\left(t_{n+1}\right)-u\left(t_{n+1}\right) \geqslant 0
$$

Thus if for some $t<a$

$$
\underline{u}(t)-u(t) \begin{cases}\leqslant 0, & n=2 m \\ \geqslant 0, & n=2 m+1\end{cases}
$$

then $\underline{u}-u$ has $n+1$ weak sign changes on a set $\left\{t, t_{1}, \ldots, t_{n+1}\right\}$ and $\underline{u}=u$ by Lemma. Similarly, $\underline{u}(t)-u(t) \leqslant 0$ for some $t>b$ implies $\underline{u}=u$.

Corollary 2. Let the assumptions of Theorem 2 be satisfied and $u \in K$. If $\bar{u} \neq \bar{u}$ and $u \neq \underline{u}$, then

$$
\begin{array}{lll}
\bar{u}(t)<u(t)<\underline{u}(t), & t<a & \text { or } \quad t>b, \\
\underline{u}(t)<u(t)<\bar{u}(t), & t<a, & \\
n=2 m \\
\bar{u}(t)<u(t)<\underline{u}(t), & t>b, & \\
n=2 m+1 \\
& & n=1 .
\end{array}
$$

Proof. From Theorem 2 the corollary is immediate.
Corollary 3. Let the assumptions of Theorem 2 be satisfied with $c \geqslant 0$ and $g=-f<f$. Then for any $u \in K$

$$
|u| \leqslant\left|u^{*}\right|, \quad t<a \quad \text { or } \quad t>\dot{b}
$$

where

$$
u^{*}= \begin{cases}\underline{u}, & n+1-j=2 k \\ \bar{u}, & n+1-j=2 k+1\end{cases}
$$

in which equality can occur if and only if

$$
u= \begin{cases}u^{*}, & c>0 \\ \pm u^{*}, & c=0\end{cases}
$$

Proof. Let $n+1-j=2 k$. Since $-\bar{u}\left(t^{*}\right)=-c \leqslant c,(-1)^{n+1-j}\left(-\bar{u}\left(t^{*}\right)\right)$ $\leqslant(-1)^{n+1-j} c$. By Part (a) of Theorem 2 we obtain that

$$
-\bar{u}(t)\left\{\begin{array}{llll}
\leqslant \underline{u}(t), & t<a & \text { or } & t>b, \\
\geqslant \underline{u}(t), & t<a, & & \\
\leqslant \underline{u}(t), & t>b, & & n=2 m+1 \\
\geqslant & & n=2 m+1
\end{array}\right.
$$

Coupled with Corollary 2 we get that

$$
\begin{array}{rlll}
-\underline{u}(t) \leqslant \bar{u}(t) \leqslant u(t) \leqslant \underline{u}(t), & t<a \quad \text { or } \quad t>b, & n=2 m \\
\underline{u}(t) \leqslant u(t) \leqslant \bar{u}(t) \leqslant-\underline{u}(t), & t<a, & & n=2 m+1 \\
-\underline{u}(t) \leqslant \bar{u}(t) \leqslant u(t) \leqslant \underline{u}(t), & t>b, & & n=2 m+1 .
\end{array}
$$

In any case we have that

$$
|u(t)| \leqslant|\underline{u}(t)|, \quad t<a \quad \text { or } \quad t>b
$$

in which equality can occur if and only if $u=\underline{u}$ or $u=-\underline{u}=\bar{u}$. But $-\underline{u}=\bar{u}$ if and only if $c=0$. Thus the equality in the above inequality can occur if and only if

$$
u= \begin{cases}\underline{u}, & c>0 \\ \pm \underline{u}, & c=0\end{cases}
$$

Let $n+1-j=2 k+1$. Since $-\underline{u}\left(t^{*}\right)=-c \leqslant c,(-1)^{n+1-j}\left(-\underline{u}\left(t^{*}\right)\right) \geqslant$ $(-1)^{n+1-j} c$. In the remainder of the proof the same analysis as in the case $n+1-j=2 k$ is applicable.

III

As usual $T_{n}(t)$ denotes the Chebyshev polynomial of degree n of first kind, $n=0,1, \ldots$.

Theorem 3. Let P be a polynomial of degree at most $n \geqslant 1$ such that $|P(t)| \leqslant 1$ for $|t| \leqslant 1$. Let s_{0} and s_{1} be the smallest values of t in $[-1,1)$ for which $T_{n}\left(s_{0}\right)=c$ and $T_{n}\left(s_{1}\right)=-c$, respectively $(|c|<1)$.
(a) If $P(-1) \leqslant c$, then

$$
\begin{array}{lll}
P(t) \leqslant T_{n}\left(\frac{1}{2}\left(1-s_{0}\right) t+\frac{1}{2}\left(1+s_{0}\right)\right), & |i|>1, & n=2 m \\
P(t) \leqslant-T_{n}\left(\frac{1}{2}\left(1-s_{1}\right) t+\frac{1}{2}\left(1+s_{1}\right)\right), & t<-1, & n=2 m+1 \\
P(t) \geqslant-T_{n}\left(\frac{1}{2}\left(1-s_{1}\right) t+\frac{1}{2}\left(1+s_{1}\right)\right), & t>1, & n=2 m+1 .
\end{array}
$$

Any of the equalities occurs for some t if and only if it occurs for any t.
(b) If $P(-1) \geqslant c$, then

$$
\begin{array}{lll}
P(t) \geqslant-T_{n}\left(\frac{1}{2}\left(1-s_{1}\right) t+\frac{1}{2}\left(1+s_{1}\right)\right), & |t|>1, & n=2 m \\
P(t) \geqslant T_{n}\left(\frac{1}{2}\left(1-s_{0}\right) t+\frac{1}{2}\left(1+s_{0}\right)\right), & t<-1, & n=2 m+1 \\
P(t) \leqslant T_{n}\left(\frac{1}{2}\left(1-s_{0}\right) t+\frac{1}{2}\left(1+s_{0}\right)\right), & t>1, & n=2 m+1 .
\end{array}
$$

Any' of the equalities occurs for some t if and only if it occurs for any' t.
Proof. We present the proof of (a), the proof of (b) being similar. For simplicity write $S_{i}(t) \equiv T_{n}\left(\frac{1}{2}\left(1-s_{i}\right) t+\frac{1}{2}\left(1+s_{i}\right)\right), i=0,1$.

As we know

$$
\begin{equation*}
T_{n}\left(x_{i}\right)=(-1)^{n-i}, \quad x_{i}=\cos \frac{n-i}{n} \pi, \quad i=0,1, \ldots, n . \tag{10}
\end{equation*}
$$

By the assumptions of the theorem $-1=x_{0}<s_{0}, s_{1}<x_{1}<\cdots<x_{n}=1$. Put

$$
t_{1}=x_{0} \quad \text { and } \quad t_{i+1}=\left(x_{i}-\frac{1}{2}\left(1+s_{0}\right)\right) /\left(\frac{1}{2}\left(1-s_{0}\right)\right), \quad i=1, \ldots, n
$$

Then $t_{1}<t_{2}<\cdots<t_{n+1}$ and

$$
S_{0}\left(t_{n+1-i}\right)= \begin{cases}T_{n}\left(S_{0}\right)=c, & i=n \\ T_{n}\left(x_{n-i}\right)=(-1)^{i}, & i=0, \ldots, n-1\end{cases}
$$

which means $A_{2}\left(S_{0}\right)=n+1$ with $f=1, g=-1$ and $t^{*}=-1$, i.e., $\underline{u}=S_{0}$ by Theorem 1. Similarly $\bar{u}=-S_{1}$. Thus, if $P(-1) \leqslant c$, then $(-1)^{n} P(-1) \leqslant$ $(-1)^{n} c$ for $n=2 m$ and $(-1)^{n} P(-1) \geqslant(-1)^{n} c$ for $n=2 m+1$. The resuits to be desired follow from Theorem 2.

From Theorem 3 the following is immediate by Corollary 2.

Corollary 4. Under the assumptions of Theorem 3 if $P(-1)=c$ but $P(t) \not \equiv T_{n}\left(\frac{1}{2}\left(1-s_{0}\right) t+\frac{1}{2}\left(1+s_{0}\right)\right)$ and $P(t) \not \equiv-T_{n}\left(\frac{1}{2}\left(1-s_{1}\right) t+\frac{1}{2}\left(1+s_{1}\right)\right)$, then

$$
\begin{array}{lll}
-T_{n}\left(\frac{1}{2}\left(1-s_{1}\right) t+\frac{1}{2}\left(1+s_{1}\right)\right) & & \\
\quad<P(t)<T_{n}\left(\frac{1}{2}\left(1-s_{0}\right) t+\frac{1}{2}\left(1+s_{0}\right)\right), & |t|>1, & n=2 m, \\
-T_{n}\left(\frac{1}{2}\left(1-s_{1}\right) t+\frac{1}{2}\left(1+s_{1}\right)\right) & & \\
\quad<P(t)<T_{n}\left(\frac{1}{2}\left(1-s_{0}\right) t+\frac{1}{2}\left(1+s_{0}\right)\right), & t>1, & n=2 m+1, \\
T_{n}\left(\frac{1}{2}\left(1-s_{0}\right) t+\frac{1}{2}\left(1+s_{0}\right)\right) & & \\
\quad<P(t)<-T\left(\frac{1}{2}\left(1-s_{1}\right) t+\frac{1}{2}\left(1+s_{1}\right)\right), & t<-1, & n=2 m+1 .
\end{array}
$$

Remark. Theorem 3 is an extension of the theorem by Rivlin and Shapiro [5], because we have

Corollary 5. Under the assumptions of Theorem 3, if $P(-1)=c$ with $0 \leqslant c \leqslant 1$ then

$$
\begin{equation*}
|P(t)| \leqslant\left|T_{n}\left(\frac{1}{2}(1-s) t+\frac{1}{2}(1+s)\right)\right|, \quad|t|>1 \tag{11}
\end{equation*}
$$

where

$$
s= \begin{cases}s_{0}, & n=2 m \\ s_{1}, & n=2 m+1\end{cases}
$$

Equality can occur in (11) if and only if

$$
\left\{\begin{array}{lll}
P(t)=\left\{\begin{array}{lll}
T_{n}\left(\frac{1}{2}(1-s) t+\frac{1}{2}(1+s)\right), & n=2 m \\
-T_{n}\left(\frac{1}{2}(1-s) t+\frac{1}{2}(1+s)\right), & n=2 m+1
\end{array}\right. & (c>0) \tag{12}\\
P(t)= \pm T_{n}\left(\frac{1}{2}(1-s) t+\frac{1}{2}(1+s)\right) & & (c=0)
\end{array}\right.
$$

Proof. In the proof of Theorem 3 we see that
$\underline{u}(t)=T_{n}\left(\frac{1}{2}\left(1-s_{0}\right) t+\frac{1}{2}\left(1+s_{0}\right)\right) \quad$ and $\quad \bar{u}(t)=-T_{n}\left(\frac{1}{2}\left(1-s_{1}\right) t+\frac{1}{2}\left(1+s_{1}\right)\right)$.
For the case $0 \leqslant c<1$ the corollary follows directly from Corollary 3 because $j=1$.

For the case $c=1$ we have that $s_{0}=-1$ for $n=2 m$ and $s_{1}=-1$ for $n=2 m+1$, which means that $s=-1$ and $T_{n}\left(\frac{1}{2}(1-s) t+\frac{1}{2}(1+s)\right) \equiv T_{n}(t)$. Thus the corollary is a well known result.

IV

In this section the main result is

Theorem 4. Let P be a polynomial of degree at most $n=2 m(m \geqslant 1)$ such that $|P(t)| \leqslant 1$ for $|t| \leqslant 1$ and $P(0)=c$. Let s_{0} and s_{1} be the smallest values of t in $[0,1)$ for which $T_{n}\left(s_{0}\right)=c$ and $T_{n}\left(s_{1}\right)=-c$, respectively. Then
(a) For $|c|<1$

$$
-T_{n}\left(\sqrt{\left(1-s_{1}^{2}\right) t^{2}+s_{1}^{2}}\right) \leqslant P(t) \leqslant T_{n}\left(\sqrt{\left(1-s_{0}^{2}\right) t^{2}+s_{0}^{2}}\right), \quad|t|>1
$$

Any of the equalities can occur for some t if and only if it occurs for any
(b) For $0 \leqslant c \leqslant 1$ and

$$
\begin{aligned}
s & = \begin{cases}s_{0}, & m=2 k \\
s_{1}, & m=2 k+1,\end{cases} \\
|P(t)| & \leqslant\left|T_{n}\left(\sqrt{\left(1-s^{2}\right) t^{2}+s^{2}}\right)\right| . \quad|t|>1 .
\end{aligned}
$$

Equality can occur if and only if

$$
\left\{\begin{array}{lll}
P(t)= \begin{cases}T_{n}\left(\sqrt{\left(1-s^{2}\right) t^{2}+s^{2}}\right), & m=2 k \\
-T_{n}\left(\sqrt{\left(1-s^{2}\right) t^{2}+s^{2}}\right), & m=2 k+1\end{cases} & (c>0) \\
P(t)= \pm T_{n}\left(\sqrt{\left(1-s^{2}\right) t^{2}+s^{2}}\right) & (c=0)
\end{array}\right.
$$

Proof. (a) For simplicity write $S_{i}(t) \equiv T_{n}\left(\sqrt{\left(1-s_{i}^{2}\right) t^{2}+s_{i}^{2}}\right), i=0,1$. Clearly $S_{i}(t)$ is symmetric with respect to t. Putting

$$
t_{m+1}=0, \quad-t_{m+1-i}=t_{m+1+i}=\sqrt{\left(x_{m+i}^{2}-s_{0}^{2}\right) /\left(1-s_{0}^{2}\right)}, \quad i=1, \ldots, m,
$$

where x_{m+i} 's are defined in (10), we have that $t_{1}<\cdots<t_{n+1}$ and

$$
S_{0}\left(t_{m+1+i}\right)= \begin{cases}T_{n}\left(s_{0}\right)=c, & i=0 \\ T_{n}\left(x_{m+i}\right)=(-1)^{m-i}, & i=1, \ldots, m\end{cases}
$$

This means by Theorem 1 that $\underline{u}=S_{0}$. Similarly we can show $\bar{u}=-S_{1}$. By Corollary 2 we obtain (a).
(b) Noting that $j=m+1$, the conclusion follows directly from Corollary 3 for the case $0 \leqslant c<1$.

For the case $c=1$ we have that $s=0$ and $T_{n}\left(\sqrt{\left(1-s^{2}\right) t^{2}+s^{2}}\right) \equiv T_{n}(t)$. The corollary is a well known result.

References

1. S. Karlin and W. J. Studden, "Tchebycheff Systems: With Applications in Analysis and Statistics," Interscience, New York, 1966.
2. Y. G. Sht, Best approximation having restricted ranges with nodes, Math. Numer. Sinica 2 (1980), 124-132 [Chinese].
3. J. R. Rice, "The Approximation of Functions," Vol. I, Addison-Wesley, Reading, MA, 1964.
4. J. R. Rice. "The Approximation of Functions," Vol. 2. Addison-Wesley, Reading, MA, 1969.
5. T. J. Rivlin and H. S. Shapiro, A unified approach to certain problems of approximation and minimization, SIAM J. Appl. Math. 9 (1961), 181-217.

[^0]: * Supported by the Science Fund of the Chinese Academy of Sciences.

